Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Control Risk for Potential Misuse of Artificial Intelligence in Science (2312.06632v1)

Published 11 Dec 2023 in cs.AI

Abstract: The expanding application of AI in scientific fields presents unprecedented opportunities for discovery and innovation. However, this growth is not without risks. AI models in science, if misused, can amplify risks like creation of harmful substances, or circumvention of established regulations. In this study, we aim to raise awareness of the dangers of AI misuse in science, and call for responsible AI development and use in this domain. We first itemize the risks posed by AI in scientific contexts, then demonstrate the risks by highlighting real-world examples of misuse in chemical science. These instances underscore the need for effective risk management strategies. In response, we propose a system called SciGuard to control misuse risks for AI models in science. We also propose a red-teaming benchmark SciMT-Safety to assess the safety of different systems. Our proposed SciGuard shows the least harmful impact in the assessment without compromising performance in benign tests. Finally, we highlight the need for a multidisciplinary and collaborative effort to ensure the safe and ethical use of AI models in science. We hope that our study can spark productive discussions on using AI ethically in science among researchers, practitioners, policymakers, and the public, to maximize benefits and minimize the risks of misuse.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (80)
  1. Lee, D.-H., et al.: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3, p. 896 (2013). Atlanta (3) Wan, C., Jones, D.T.: Protein function prediction is improved by creating synthetic feature samples with generative adversarial networks. Nature Machine Intelligence 2(9), 540–550 (2020) (4) Marouf, M., Machart, P., Bansal, V., Kilian, C., Magruder, D.S., Krebs, C.F., Bonn, S.: Realistic in silico generation and augmentation of single-cell rna-seq data using generative adversarial networks. Nature communications 11(1), 166 (2020) (5) Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996) (6) Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012). JMLR Workshop and Conference Proceedings (7) Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, C., Jones, D.T.: Protein function prediction is improved by creating synthetic feature samples with generative adversarial networks. Nature Machine Intelligence 2(9), 540–550 (2020) (4) Marouf, M., Machart, P., Bansal, V., Kilian, C., Magruder, D.S., Krebs, C.F., Bonn, S.: Realistic in silico generation and augmentation of single-cell rna-seq data using generative adversarial networks. Nature communications 11(1), 166 (2020) (5) Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996) (6) Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012). JMLR Workshop and Conference Proceedings (7) Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Marouf, M., Machart, P., Bansal, V., Kilian, C., Magruder, D.S., Krebs, C.F., Bonn, S.: Realistic in silico generation and augmentation of single-cell rna-seq data using generative adversarial networks. Nature communications 11(1), 166 (2020) (5) Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996) (6) Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012). JMLR Workshop and Conference Proceedings (7) Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996) (6) Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012). JMLR Workshop and Conference Proceedings (7) Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012). JMLR Workshop and Conference Proceedings (7) Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  2. Wan, C., Jones, D.T.: Protein function prediction is improved by creating synthetic feature samples with generative adversarial networks. Nature Machine Intelligence 2(9), 540–550 (2020) (4) Marouf, M., Machart, P., Bansal, V., Kilian, C., Magruder, D.S., Krebs, C.F., Bonn, S.: Realistic in silico generation and augmentation of single-cell rna-seq data using generative adversarial networks. Nature communications 11(1), 166 (2020) (5) Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996) (6) Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012). JMLR Workshop and Conference Proceedings (7) Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Marouf, M., Machart, P., Bansal, V., Kilian, C., Magruder, D.S., Krebs, C.F., Bonn, S.: Realistic in silico generation and augmentation of single-cell rna-seq data using generative adversarial networks. Nature communications 11(1), 166 (2020) (5) Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996) (6) Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012). JMLR Workshop and Conference Proceedings (7) Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996) (6) Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012). JMLR Workshop and Conference Proceedings (7) Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012). JMLR Workshop and Conference Proceedings (7) Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  3. Marouf, M., Machart, P., Bansal, V., Kilian, C., Magruder, D.S., Krebs, C.F., Bonn, S.: Realistic in silico generation and augmentation of single-cell rna-seq data using generative adversarial networks. Nature communications 11(1), 166 (2020) (5) Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996) (6) Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012). JMLR Workshop and Conference Proceedings (7) Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996) (6) Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012). JMLR Workshop and Conference Proceedings (7) Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012). JMLR Workshop and Conference Proceedings (7) Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  4. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996) (6) Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012). JMLR Workshop and Conference Proceedings (7) Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012). JMLR Workshop and Conference Proceedings (7) Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  5. Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012). JMLR Workshop and Conference Proceedings (7) Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  6. Theodoris, C.V., Xiao, L., Chopra, A., Chaffin, M.D., Al Sayed, Z.R., Hill, M.C., Mantineo, H., Brydon, E.M., Zeng, Z., Liu, X.S., et al.: Transfer learning enables predictions in network biology. Nature, 1–9 (2023) (8) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  7. Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do transformers really perform badly for graph representation? In: Thirty-Fifth Conference on Neural Information Processing Systems (2021). https://openreview.net/forum?id=OeWooOxFwDa (9) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  8. Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023) (10) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  9. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021) (11) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  10. Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec, J., Coley, C.W., Xiao, C., Sun, J., Zitnik, M.: Artificial intelligence foundation for therapeutic science. Nature chemical biology 18(10), 1033–1036 (2022) (12) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  11. Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N., Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics by guiding human intuition with ai. Nature 600(7887), 70–74 (2021) (13) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  12. Zhu, Q., Huang, Y., Zhou, D., Zhao, L., Guo, L., Yang, R., Sun, Z., Luo, M., Zhang, F., Xiao, H., et al.: Automated synthesis of oxygen-producing catalysts from martian meteorites by a robotic ai chemist. Nature Synthesis, 1–10 (2023) (14) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  13. Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de Las Casas, D., et al.: Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602(7897), 414–419 (2022) (15) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  14. Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y., Ceder, G.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature (2023). https://doi.org/10.1038/s41586-023-06734-w (16) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  15. Merchant, A., Batzner, S., Schoenholz, S.S., Aykol, M., Cheon, G., Cubuk, E.D.: Scaling deep learning for materials discovery. Nature, 1–6 (2023) (17) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  16. Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., et al.: An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 1–6 (2023) (18) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  17. Urbina, F., Lentzos, F., Invernizzi, C., Ekins, S.: Dual use of artificial-intelligence-powered drug discovery. Nature Machine Intelligence 4(3), 189–191 (2022) (19) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  18. Quach, K.: Friendly AI chatbots will be designing bioweapons for criminals ’within years’. https://www.theregister.com/2023/07/28/ai_senate_bioweapon/ (2022) (20) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  19. Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks, A., Van Gils, J., Birk, S.: Chemical pollution imposes limitations to the ecological status of european surface waters. Scientific Reports 10, 14825 (2020) (21) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  20. Tang, F.H.M., Lenzen, M., McBratney, A., Maggi, F.: Risk of pesticide pollution at the global scale. Nature Geoscience 14(4), 206–210 (2021) (22) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  21. Sandbrink, J.B.: Artificial intelligence and biological misuse: Differentiating risks of language models and biological design tools. arXiv preprint arXiv:2306.13952 (2023) (23) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  22. Anthropic: Frontier Threats Red Teaming for AI Safety. https://www.anthropic.com/index/frontier-threats-red-teaming-for-ai-safety. Accessed: November 2023 (2023) (24) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  23. Supermarket AI meal planner app suggests recipe that would create chlorine gas. https://www.theguardian.com/world/2023/aug/10/pak-n-save-savey-meal-bot-ai-app-malfunction-recipes (25) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  24. Lowe, D.M.: Extraction of chemical structures and reactions from the literature. PhD thesis, University of Cambridge (2012) (26) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  25. Torkzadehmahani, R., Nasirigerdeh, R., Blumenthal, D.B., Kacprowski, T., List, M., Matschinske, J., Spaeth, J., Wenke, N.K., Baumbach, J.: Privacy-preserving artificial intelligence techniques in biomedicine. Methods of Information in Medicine 61, 12–27 (2022) (27) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  26. Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., Gigante, A., Valencia, A., Rementeria, M.J., Chadha, A.S., et al.: Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ digital medicine 3(1), 81 (2020) (28) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  27. Yang, L., Liu, Y.-T., Park, Y., Park, S.-W., Chang, S.: Ni-mediated generation of “cn” unit from formamide and its catalysis in the cyanation reactions. ACS Catalysis 9(4), 3360–3365 (2019) (29) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  28. Guo, Z., Yi, Y., Wang, L., Yan, J., Guo, H.: Pt/ts-1 catalyst promoted c–n coupling reaction in ch4–nh3 plasma for hcn synthesis at low temperature. ACS Catalysis 8(11), 10219–10224 (2018) (30) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  29. Yi, Y., Wang, X., Jafarzadeh, A., Wang, L., Liu, P., He, B., Yan, J., Zhang, R., Zhang, H., Liu, X., et al.: Plasma-catalytic ammonia reforming of methane over cu-based catalysts for the production of hcn and h2 at reduced temperature. ACS Catalysis 11(3), 1765–1773 (2021) (31) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  30. de Almeida, A.F., Moreira, R., Rodrigues, T.: Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 3(10), 589–604 (2019) (32) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  31. Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10), 1612–1620 (2021) (33) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  32. Pirie, J.: The manufacture of hydrocyanic acid by the andrussow process. Platinum Metals Review 2(1), 7–11 (1958) (34) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  33. U.S. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=83 (35) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  34. Ghasemi, F., Mehridehnavi, A., Pérez-Garrido, A., Pérez-Sánchez, H.: Neural network and deep-learning algorithms used in qsar studies: merits and drawbacks. Drug discovery today 23(10), 1784–1790 (2018) (36) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  35. Kumar, V., Faheem, M., Lee, K.W., et al.: A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug discovery today 27(2), 529–537 (2022) (37) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  36. Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., et al.: Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of admet properties. Nucleic Acids Research 49(W1), 5–14 (2021) (38) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  37. OpenAI: GPT-4 Technical Report (2023) (39) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  38. Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C.C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P.S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., Scialom, T.: Llama 2: Open Foundation and Fine-Tuned Chat Models (2023) (40) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  39. Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback (2022) (41) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  40. Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face (2023) (42) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  41. Significant Gravitas: AutoGPT. https://github.com/Significant-Gravitas/AutoGPT (43) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  42. Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W., Wu, Y.N., Zhu, S.-C., Gao, J.: Chameleon: Plug-and-play compositional reasoning with large language models. arXiv preprint arXiv:2304.09842 (2023) (44) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  43. Bran, A.M., Cox, S., White, A.D., Schwaller, P.: Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint arXiv:2304.05376 (2023) (45) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  44. AI4Science, M.R., Quantum, M.A.: The impact of large language models on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361 (2023) (46) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  45. Yao, J., Yi, X., Wang, X., Wang, J., Xie, X.: From instructions to intrinsic human values–a survey of alignment goals for big models. arXiv preprint arXiv:2308.12014 (2023) (47) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  46. Karpas, E., Abend, O., Belinkov, Y., Lenz, B., Lieber, O., Ratner, N., Shoham, Y., Bata, H., Levine, Y., Leyton-Brown, K., Muhlgay, D., Rozen, N., Schwartz, E., Shachaf, G., Shalev-Shwartz, S., Shashua, A., Tenenholtz, M.: MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning (2022) (48) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  47. Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y.: React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022) (49) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  48. Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E.H., Le, Q.V., Zhou, D.: Chain-of-thought prompting elicits reasoning in large language models. In: NeurIPS (2022). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html (50) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  49. Bhardwaj, R., Poria, S.: Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment (2023) (51) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  50. Zhang, Z., Lei, L., Wu, L., Sun, R., Huang, Y., Long, C., Liu, X., Lei, X., Tang, J., Huang, M.: Safetybench: Evaluating the safety of large language models with multiple choice questions. arXiv preprint arXiv:2309.07045 (2023) (52) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  51. Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P.M., Bowman, S.R.: Bbq: A hand-built bias benchmark for question answering. arXiv preprint arXiv:2110.08193 (2021) (53) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  52. Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., et al.: A general language assistant as a laboratory for alignment. arXiv preprint arXiv:2112.00861 (2021) (54) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  53. Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685 (2023) (55) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  54. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) (56) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  55. Anil, R., Dai, A.M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z., Chu, E., Clark, J.H., Shafey, L.E., Huang, Y., Meier-Hellstern, K., Mishra, G., Moreira, E., Omernick, M., Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang, Y., Abrego, G.H., Ahn, J., Austin, J., Barham, P., Botha, J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M., Cheng, Y., Cherry, C., Choquette-Choo, C.A., Chowdhery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S., Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V., Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A.C., Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A., Smilkov, D., So, D.R., Sohn, D., Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov, S., Wu, Y.: PaLM 2 Technical Report (2023) (57) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  56. Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90(2023). https://vicuna.lmsys.org (58) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  57. Jiang, A.Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D.S., de las Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L.R., Lachaux, M.-A., Stock, P., Scao, T.L., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.: Mistral 7B (2023) (59) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  58. Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., Wu, F.: Defending chatgpt against jailbreak attack via self-reminder (2023) (60) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  59. Schreck, J.S., Coley, C.W., Bishop, K.J.: Learning retrosynthetic planning through simulated experience. ACS central science 5(6), 970–981 (2019) (61) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  60. Wan, Y., Hsieh, C.-Y., Liao, B., Zhang, S.: Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, pp. 22475–22490 (2022). PMLR (62) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  61. Acion, L., Rajngewerc, M., Randall, G., Etcheverry, L.: Generative ai poses ethical challenges for open science. Nature Human Behaviour, 1–2 (2023) (63) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  62. Heid, E., Greenman, K.P., Chung, Y., Li, S.-C., Graff, D.E., Vermeire, F.H., Wu, H., Green, W.H., McGill, C.J.: Chemprop: A machine learning package for chemical property prediction (2023) (64) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  63. Sharma, B., Chenthamarakshan, V., Dhurandhar, A., Pereira, S., Hendler, J.A., Dordick, J.S., Das, P.: Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Scientific Reports 13(1), 4908 (2023) (65) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  64. Singhal, K., Azizi, S., Tu, T., Mahdavi, S.S., Wei, J., Chung, H.W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., et al.: Large language models encode clinical knowledge. Nature 620(7972), 172–180 (2023) (66) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  65. Gopal, A., Helm-Burger, N., Justen, L., Soice, E.H., Tzeng, T., Jeyapragasan, G., Grimm, S., Mueller, B., Esvelt, K.M.: Will releasing the weights of large language models grant widespread access to pandemic agents? arXiv preprint arXiv:2310.18233 (2023) (67) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  66. Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023) (68) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  67. Van Dis, E.A., Bollen, J., Zuidema, W., van Rooij, R., Bockting, C.L.: Chatgpt: five priorities for research. Nature 614(7947), 224–226 (2023) (69) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  68. Food, U.S., Administration, D.: Artificial Intelligence and Machine Learning (AI/ML) for Drug Development. https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development (2023) (70) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  69. OpenAI: Introducing Superalignment. https://openai.com/blog/introducing-superalignment (2023) (71) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  70. Administration, B.-H.: FACT SHEET: Biden-Harris Administration Announces New Actions to Promote Responsible AI Innovation that Protects Americans’ Rights and Safety. https://www.whitehouse.gov/ostp/news-updates/2023/05/04/fact-sheet-biden-harris-administration-announces-new-actions-to-promote-responsible-ai-innovation-that-protects-americans-rights-and-safety/ (2023) (72) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  71. Zirpoli, C.T.: Generative artificial intelligence and copyright law (2023) (73) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  72. Lakomy, M.: Artificial intelligence as a terrorism enabler? understanding the potential impact of chatbots and image generators on online terrorist activities. Studies in Conflict & Terrorism, 1–21 (2023) (74) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  73. Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., Chen, Q., Peng, W., Feng, X., Qin, B., et al.: A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 (2023) (75) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  74. Xue, L., Bajorath, J.: Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial chemistry & high throughput screening 3(5), 363–372 (2000) (76) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  75. Rogers, D., Hahn, M.: Extended-connectivity fingerprints. Journal of chemical information and modeling 50(5), 742–754 (2010) (77) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  76. Carhart, R.E., Smith, D.H., Venkataraghavan, R.: Atom pairs as molecular features in structure-activity studies: definition and applications. Journal of Chemical Information and Computer Sciences 25(2), 64–73 (1985) (78) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  77. Johnson, M.A., Maggiora, G.M.: Concepts and applications of molecular similarity (1990) (79) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  78. Chemical Weapons Convention, Annex on Chemicals, B. Schedules of Chemicals. http://www.opcw.org. Accessed: November 2023 (80) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  79. PAN International List of Highly Hazardous Pesticides. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf. Accessed: November 2023 (81) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019) Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
  80. Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C.A., Bekas, C., Lee, A.A.: Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9), 1572–1583 (2019)
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (13)
  1. Jiyan He (12 papers)
  2. Weitao Feng (10 papers)
  3. Yaosen Min (6 papers)
  4. Jingwei Yi (12 papers)
  5. Kunsheng Tang (4 papers)
  6. Shuai Li (295 papers)
  7. Jie Zhang (846 papers)
  8. Kejiang Chen (40 papers)
  9. Wenbo Zhou (35 papers)
  10. Xing Xie (220 papers)
  11. Weiming Zhang (135 papers)
  12. Nenghai Yu (173 papers)
  13. Shuxin Zheng (32 papers)
Citations (8)
X Twitter Logo Streamline Icon: https://streamlinehq.com